Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tetraaquabis(1,3-benzimidazol-3-ium-1,3-diacetato)cobalt(II) hemihydrate

Ling Huang* and Ding-Ben Chen

Department of Chemistry, Taizhou University, Taizhou 317000, People's Republic of China

Correspondence e-mail: huangItzu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in solvent or counterion
R factor $=0.045$
$w R$ factor $=0.103$
Data-to-parameter ratio $=11.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the centrosymmetric title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Co}^{\text {II }}$ complex has a distorted octahedral coordination geometry with two monodentate ligands and four water molecules. The crystal packing is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and a $\pi-\pi$ stacking interaction.

Comment

Imidazole and benzimidazole carboxylic acids and their derivatives are of practical importance in the design of therapeutic agents, such as antifilarial and antineoplastic (Ram et al., 1992), anthelmintic (Dubey et al., 1985) and antiviral compounds (Garuti et al., 2000) and 5-HT4 receptor antagonists (Marıa et al., 1999). In addition, these compounds are of fundamental value as ligands in the coordination chemistry of supramolecular metal complexes, as an N atom in the imidazole or benzimidazole ring and O atoms in the carboxylate groups can act as donor sites (Liu et al., 2005). Metal complexes with such ligands, e.g. the 1,3-bis(carboxymethyl)imidazolium Zn complex (Fei, Geldbach et al., 2005) and Sr complex (Fei, Zhao et al., 2005), have been reported. To extend this research, we report here the synthesis and crystal structure of the title Co complex, (I).

(I)

The central $\mathrm{Co}^{\mathrm{II}}$ atom, lying on a centre of symmetry, is coordinated by four water molecules and two monodentate 1 -(carboxymethyl)-1,3-benzimidazol-3-ium-3-acetate ligands (Fig. 1). This CoO_{6} octahedron is slightly distorted, as the $\mathrm{Co}-\mathrm{O}_{\text {aqua }}$ bond lengths are shorter than the other $\mathrm{Co}-\mathrm{O}$ bonds (Table 1). The $\mathrm{Co}-\mathrm{O}$ coordination distances are similar to those found in octahedral $\mathrm{Co}^{\mathrm{II}}$ complexes containing monodentate carboxylate and water as ligands, such as tetra-aqua-bis(p-nitrobenzoato)cobalt(II) dihydrate (Nadzhafov et al., 1981) and tetraaqua-bis(3,5-dinitrobenzoato)cobalt(II) tetrahydrate (Tahir et al., 1996). The bond lengths and angles

Received 6 October 2006
Accepted 21 November 2006

Figure 1
The molecular structure of (I), showing 30\% probability displacement ellipsoids and atom-numbering scheme. Unlabelled atoms are related to labelled atoms by $2-x,-y, 1-z$.

Figure 2
Partial packing diagram of (I). Dashed lines indicate hydrogen bonds.
of the 1-(carboxymethyl)-1,3-benzimidazol-3-ium-3-acetate ligand in (I) are in good agreement with those in the free ligand (Chen \& Huang, 2006).

In the crystal structure, the uncoordinated water molecule is involved in hydrogen bonds ($\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 6$). The coordinated water molecules are hydrogen-bonded to the carboxylate O atoms (Table 2). These intermolecular hydrogen bonds as well as non-classical $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2) link adjacent molecules to generate a threedimensional network. In addition, there is a $\pi-\pi$ stacking interaction between benzimidazolium units, the centroidcentroid $(2-x, 1-y,-z)$ distance and the interplanar distance being 3.63 (2) and 3.49 (3) \AA, respectively.

Experimental

An ethanol (50\%) solution of 1-(carboxymethyl)-1 H -benzimidazol-3-ium-3-acetate ($0.0937 \mathrm{~g}, 0.4 \mathrm{mmol}$) was dissolved in ethanol $(50 \%$, $20 \mathrm{ml})$ containing $\mathrm{NaOH}(0.0161 \mathrm{~g}, 0.4 \mathrm{mmol})$. The resulting solution was added dropwise to a hot solution of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.0952 \mathrm{~g}$, 0.4 mmol) dissolved in the same solvent (20 ml) with continuous stirring for 1 h . After one month, red crystals suitable for X-ray diffraction were obtained (yield 42% based on Co). Thermogravi-
metric analysis (TGA) performed on a single crystalline sample under a nitrogen atmosphere over the range $303-1173 \mathrm{~K}$ gave the weight loss of one half of an uncoordinated water molecule and four coordinated water molecules between 303 and 405 K (calculated 13.37; found 13.40%).

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	$V=636.38(13) \AA^{3}$
$M_{r}=606.41$	$Z=1$
Triclinic, $P \overline{1}$	$D_{x}=1.582 \mathrm{Mg} \mathrm{m}^{-3}$
$a=7.4237(9) \AA$	Mo $\alpha \alpha$ radiation
$b=9.4197(11) \AA$	$\mu=0.75 \mathrm{~mm}^{-1}$
$c=9.6478(11) \AA$	$T=273(2) \mathrm{K}$
$\alpha=81.432(2)^{\circ}$	Block, red
$\beta=75.952(2)^{\circ}$	$0.22 \times 0.14 \times 0.10 \mathrm{~mm}$
$\gamma=77.838(2)^{\circ}$	

Data collection

Siemens SMART CCD areadetector diffractometer ω and φ scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.853, T_{\text {max }}=0.929$

> 3375 measured reflections 2224 independent reflections 2019 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.016$ $\theta_{\max }=25.1^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0489 P)^{2}\right. \\
& \quad+0.3708 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.37 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}-0.29 \mathrm{e}^{-3} .
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{O} 1$	$2.0677(19)$	$\mathrm{O} 4-\mathrm{C} 11$	$1.254(3)$
$\mathrm{Co} 1-\mathrm{O} 5$	$2.0995(19)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.330(4)$
$\mathrm{Co} 1-\mathrm{O} 6$	$2.114(2)$	$\mathrm{N} 1-\mathrm{C} 6$	$1.397(4)$
O1-C9	$1.253(3)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.325(4)$
O2-C9	$1.238(3)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.392(4)$
$\mathrm{O} 3-\mathrm{C} 11$	$1.236(4)$		
O1 $^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 5$	$89.76(8)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 6^{\mathrm{i}}$	$91.42(8)$
$\mathrm{O} 5-\mathrm{Co} 1-\mathrm{O} 6$	$92.73(8)$	$\mathrm{O} 3-\mathrm{C} 11-\mathrm{O} 4$	$126.2(3)$

Symmetry code: (i) $-x+2,-y,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.85	1.92	$2.744(3)$	163
$\mathrm{O} 5-\mathrm{H} 5 B \cdots 3^{\mathrm{ii}}$	0.85	1.82	$2.666(3)$	176
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 4^{\mathrm{iii}}$	0.85	1.94	$2.738(3)$	157
$\mathrm{O} 6-\mathrm{H} 6 B \cdots 4^{\text {ii }}$	0.85	1.91	$2.750(3)$	169
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 6$	0.85	2.52	$2.993(9)$	116
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	0.93	2.32	$2.681(3)$	102
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {ii }}$	0.93	2.59	$3.367(4)$	141
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O}^{4 i}$	0.93	2.54	$3.208(4)$	129
$\mathrm{C} 10-\mathrm{H} 10 A \cdots \mathrm{O}^{\mathrm{iv}}$	0.97	2.46	$3.375(4)$	157

Symmetry codes: (i) $-x+2,-y,-z+1$; (ii) $-x+1,-y+1,-z+1$; (iii) $x, y-1, z$; (iv) $x, y+1, z$.

The uncoordinated water molecule is statistically disordered. Refinement converged with the site-occupation factor of 0.50 consistent with the TGA result. H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{O}-\mathrm{H}=0.85 \AA)$ and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $1.5 U_{\text {eq }}(\mathrm{O})$.

metal-organic papers

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors thank Taizhou University for research grant No. 06ND29.

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, D.-B. \& Huang, L. (2006). Acta Cryst. E62, o4686-o4688.

Dubey, R., Abuzar, S., Sharma, S., Chatterjee, R. K. \& Katiyar, J. C. (1985). J. Med. Chem. 28, 1748-1750
Fei, Z., Geldbach, T. J., Zhao, D., Scopelliti, R. \& Dyson, P. J. (2005). Inorg. Chem. 44, 5200-5202.
Fei, Z., Zhao, D., Geldbach, T. J., Scopelliti, R., Dyson, P. J. \& Antonijevic, S. (2005). Angew. Chem. Int. Ed. 44, 5720-5725.

Garuti, L., Roberti, M. \& Gentilomi, G. (2000). Farmaco, 55, 35-39.
Liu, Z., Chen, Y., Liu, P., Wang, J. \& Huang, M. (2005). J. Solid State Chem. 178, 2306-2312.
Marıa, L., Lopez, R. \& Bellinda, B. (1999). Bioorg. Med. Chem. 7, 2271-2281. Nadzhafov, G. N., Shnulin, A. N. \& Marnedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-126.
Ram, S., Wise, D. S., Wotring, L. L., McCall, J. W. \& Townsend, L. B. (1992). J. Med. Chem. 35, 539-547.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Tahir, M. N., Ülkü, D. \& Mövsümov, E. M. (1996). Acta Cryst. C52, 13921394.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

